New Guidance for the Spill Plume in Smoke Control Design

Dr Roger Harrison
BRE Global
BRE Fire Research Conference
18 September 2018
Smoke control systems may have several objectives, such as:

- Removing smoke from the building for means of escape
- Maintaining tenable conditions in the area of fire origin or areas adjoining the fire for means of escape
- Removing smoke during or post fire-fighting operations
- Minimising the risk of smoke spread to adjoining parts of the building
The Thermal Spill Plume

- Determine mass flow rate of gases produced
- Dependent on entrainment of air into plume
- 2-D plumes do not include end entrainment
- 3-D plumes include end entrainment
Calculation Methods

– Simple spill plume formulae (based on empirical correlations)
 – Commonly used (e.g. CIBSE Guide E, PD 7974-2, NFPA 92)
 – Useful in early design stages to inform more complex methods

– Analytical methods or theories (utilises empirical data)
 – The BRE spill plume method [BR 368], etc.

– Computational Fluid Dynamics (CFD) modelling
 – More versatile, can be used for novel designs

– Uncertainties and limitations in some calculation methods
 – Supporting experimental data has been sparse
 – Can be large differences predicted smoke production rates
 – Scenarios where design guidance does not exist
Aims and Objectives

– Provide a better understanding of spill plume entrainment

– Produce new data to provide options to Fire Engineers for design purposes in the form of:
 – A range of new and improved simplified design formulae for a variety of spill plume scenarios
 – Improvements to the existing analytical methods (i.e. the empirical elements)
 – An initial assessment of CFD modelling with recommendations for appropriate use (e.g. grid size)
– Alcohol fires in a 1/10th physical scale model
– Designed to satisfy the scaling laws (i.e. turbulent flow on full and model scale)
– Measure temperature, velocity, mass flow, etc
– Over 300 experiments carried out
- CFD used to model the experiment for validation
- Examine plumes at high heights of rise
- Fire Dynamics Simulator (FDS 5) mainly used
Terminology

\[W_s \] = width of plume at the spill edge (m)

\[d_s \] = depth of the layer below the spill edge (m)

\[z_s \] = height of rise of plume above the spill edge (m)

\[\dot{Q}_c \] = convective heat flow of the layer below the spill edge (kW)

\[\dot{m}_s \] = mass flow rate of the layer below the spill edge (kg/s)
Experiments

- Parameter variation
 - Fire size, compartment opening width and height of rise of plume varied
 - 2-D and 3-D plumes
 - Balcony and adhered plumes
3-D Balcony Spill Plume

\[\frac{m'_{3-D} - m'_{2-D}}{Q'_{c}} \] (kg kW\(^{-1}\) s\(^{-1}\))

\[z_{c}/Q'^{2/3} \] (m\(^{3/3}\) kW\(^{-2/3}\))

- $W_1 = 1.0 \text{ m, } Q'_{c} = 3.6 \text{ to } 12.2 \text{ kW}$
- $W_2 = 0.8 \text{ m, } Q'_{c} = 3.7 \text{ to } 12.8 \text{ kW}$
- $W_3 = 0.6 \text{ m, } Q'_{c} = 3.9 \text{ to } 12.3 \text{ kW}$
- $W_4 = 0.4 \text{ m, } Q'_{c} = 3.6 \text{ to } 10.9 \text{ kW}$
- $W_5 = 0.2 \text{ m, } Q'_{c} = 3.4 \text{ to } 9.9 \text{ kW}$
3-D Balcony Spill Plume

\[
\frac{\dot{m}_{3D} - \dot{m}_{2D}}{\dot{Q}_s} (\text{kg kW}^{-1} \text{s}^{-1})
\]

\[
z_s/Q_{s}^{1/3} (\text{m}^{3/3} \text{ kW}^{-2/3})
\]

NFPA92
CIBSE E / PD7974-2
HARRISON AND SPEARPOINT (2004)

\[
\dot{W}_s = 1.0 \text{ m}
\]
\[
\dot{W}_s = 0.8 \text{ m}
\]
\[
\dot{W}_s = 0.6 \text{ m}
\]
\[
\dot{W}_s = 0.4 \text{ m}
\]
\[
\dot{W}_s = 0.2 \text{ m}
\]
– General expression developed by decoupling and characterising key entrainment regions
– Experimental data collapse to a single general relationship
Sum of entrainment into the decoupled flows

\[
\dot{m}_{p,2D} = 0.16 \dot{Q}_c^{1/3} W_s^{2/3} z_s + 1.34 \dot{m}_s
\]

\[
\dot{m}_{p,3D} = 0.16 \dot{Q}_c^{1/3} \left(W_s^{2/3} + 1.56 d_s^{2/3} \right) z_s + 1.34 \dot{m}_s
\]
- Grid sensitivity analysis carried out using the scale model data
- Guidance on appropriate grid for design purposes
- FDS5 provided a very good prediction of plume behaviour and entrainment
- FDS5 then used extrapolate the analysis (i.e. higher heights of rise)
3-D Balcony Plume to Axisymmetric

– New empirical design formula exhibits linearity
– The spill plume will eventually behave like an axisymmetric plume at high heights of rise (a power law)
– By matching the new design formula with an axisymmetric plume formula

\[z_{\text{trans}} = 3.4 \left(W_s^{2/3} + 1.56 d_s^{2/3} \right)^{3/2} \]

For \(z_s > z_{\text{trans}} \)

\[\dot{m}_{p,3D} = 0.071 \dot{Q}^{1/3} z_s^{5/3} \]
3-D Balcony Plume to Axisymmetric

FDS modelling at higher plume heights than in experiments

Increasing height of rise
3-D Balcony Plume to Axisymmetric

$W = 2\, \text{m} \text{ (full-scale equivalent)}$

$\dot{m}_p \text{ (kg s}^{-1}\text{)}$

$z \text{ (m) (full-scale equivalent)}$

FDS prediction

Linear equation based on experiment
3-D Balcony Plume to Axisymmetric

$W = 10 \, \text{m (full-scale equivalent)}$

$FDS \text{ prediction}$

Linear equation based on experiment
3-D Adhered Plume

Wide opening Intermediate opening Narrow opening
3-D Adhered Plume
Adhered Spill Plume Formulae

- General expression developed by decoupling and characterising key entrainment regions
- Experimental data collapse to a single relationship

\[m_{p,2D} = 0.08 \hat{Q}_c^{1/3} W_s^{2/3} z_s + 1.34 m_s \]

\[m_{p,3D} = 0.3 \hat{Q}_c^{1/3} W_s^{1/6} d_s^{1/2} z_s + 1.34 m_s \]
3-D Adhered Plume

Wide opening

Intermediate opening

Narrow opening
To assess guidance with full scale ‘Hot Smoke Test’ data
Implementation

- CIBSE Guide E (Fire Engineering)
 - Included in next revision, late 2018

- PD 7974 Part 2 (Application of fire safety engineering principles to the design of buildings - Spread of smoke and toxic gases within and beyond the enclosure of origin)
 - Full revision of this standard
 - Late 2018

- BS EN 12101 (Guidelines on functional recommendations and calculation methods for smoke and heat exhaust ventilation systems)
 - Ongoing
Forms the spill plume entrainment model in B-RISK, a next generation version of the BRANZFIRE fire zone model.
Experimental data used for FDS6 validation guide:
Further Reading

Further Reading

Summary

– New guidance has been developed in the form of:
 – A range of new simplified design formulae for balcony and adhered plumes that apply more generally than existing methods
 – A simplified formula for when a balcony plume becomes an axisymmetric plume
 – An assessment on the use of numerical modelling
 – Being implemented into standards and models
Thank you

BRE Group
Watford, UK
WD25 9XX
+44 (0)333 321 88 11
enquiries@bre.co.uk
www.bregroup.com