BRE Environmental Profiles 2013

Product Category Rules for Type III environmental product declaration of construction products to EN 15804:2012

FINAL VERSION
6.4.2 Carbonation (of concrete) 25
6.5 Inventory Analysis 25
6.5.1 Collecting data 25
6.5.2 Calculation procedures 26
6.5.3 Allocation of input flows and output emissions 26
6.5.3.1 Allocation of material and energy flows 26
6.5.3.2 Allocation procedure for future material and energy recovery 27
6.6 Impact Assessment 28
7 Content of the Environmental Product Declaration 29
 7.1 Declaration of general information 29
 7.2 Declaration of environmental parameters derived from LCA 30
 7.2.1 Other environmental indicators 31
 7.3 Scenarios and additional technical information 32
 7.4 Additional information on emissions to indoor air, soil and water during the use stage 32
 7.5 Aggregation of information modules 32
 7.6 Format of BRE EN 15804 EPD 32
8 Project Report 35
 8.1 Data availability for verification 35
 8.2 Validity of EPD 35
Annex A – BRE PCR Peer review statement 36
Annex B – Carbon Sequestration 37
Annex C – Carbonation of products containing calcium oxide/calcium hydroxide 39
Introduction

Manufacturers of construction products, designers, users and owners of buildings and others active in the building and construction sector are demanding information that will enable them to make decisions which address environmental impacts of buildings and other construction works. An increasingly common solution is to create environmental product declarations (EPD). These are ISO Type III environmental declarations providing quantified environmental data for predetermined indicators using independently verified life cycle assessment (LCA).

EPD are similar to the nutritional information found on the back of food packets. EPD present quantified environmental information on the life cycle of a product, i.e. the impacts caused throughout its life. In Europe, EPD for construction products are derived according to the requirements of EN 15804, Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. Published in 2012 by the European Committee for Standardisation (CEN), EN 15804 is part of a suite of standards for the assessment of the sustainability of construction works at both product level and building level. This suite of standards includes:

- EN 15643-1, Sustainability of construction works – Sustainability assessment of buildings – Part 1: General framework
- EN 15643-2, Sustainability of construction works – Assessment of buildings – Part 2: Framework for the assessment of environmental performance
- EN 15978, Sustainability of construction works – Assessment of environmental performance of buildings – Calculation method
- CEN/TR 15941, Sustainability of construction works – Environmental product declarations – Methodology for the selection and use of generic data
- EN 15942, Sustainability of construction works – Environmental product declarations – Communication formats: business to business

This document forms the Product Category Rules (PCR) for BRE’s Type III EPD programme. Due to the on-going nature of the work of the CEN Technical Committee (TC 350), and the continuing developments in LCA, it is anticipated that the information contained in this PCR will continue to evolve.

NOTE: Compliance with this PCR does not confer immunity from legal obligations. Users of this PCR should ensure that they possess the latest issue and all amendments.
1 Scope

This is a Product Category Rule (PCR) document for the assessment of the environmental performance of construction products. It describes BRE’s methodology for creating an EPD for any construction product or service.

The advantage of a single PCR document covering all construction products is that it enables all sectors to readily see how all materials are assessed at the product level. As there is currently no such PCR existing, BRE has created a new PCR to fulfil this purpose.

This PCR document has been prepared to be in line with the requirements of EN 15804:2012, Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products.

The methodology underpinning the EPD has therefore also been prepared to be in conformity with the relevant ISO standards for Type III environmental declarations, ISO 14025:2010 and ISO 21930:2007, and the standards relating to environmental management using life cycle assessment, ISO 14040:2006 and 14044:2006.

NOTE: Permission to reproduce extracts from BS EN 15804:2012, Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products is granted by BSI. British Standards can be obtained in PDF or hard copy formats from the BSI online shop: www.bsigroup.com/Shop or by contacting BSI Customer Services for hardcopies only: Tel: +44 (0)20 8996 9001, Email: cservices@bsigroup.com.
2 Normative references

The following referenced and unreferenced documents are indispensable for the application of this document.

- EN 15804:2012, Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products
- EN 15978:2011, Sustainability of construction works – Assessment of environmental performance of buildings – Calculation method
- CEN/TR 15941:2010, Sustainability of construction works – Environmental product declarations – Methodology for selection and use of generic data
- EN 15942:2011, Sustainability of construction works – Environmental product declarations – Communication formats: business to business
- ISO 21930:2007, Sustainability of construction works – Environmental declaration of building products (as referenced by EN 15804)
3 Terms and Definitions

The technical terms and concepts employed in life cycle assessment are defined in accordance with EN 15804:2012. Terms are not defined where they retain their normal dictionary definition. Where bold type is used within a definition, this indicates a cross reference to another term defined in this clause.

3.1 Ancillary product / Complementary product

Construction product that enables another construction product to fulfil its purpose in the intended application, for example, fasteners used to attach structural panels to framing members.

3.2 Average data

Data representative of a product, product group or construction service, provided by more than one supplier. A product group or construction service can contain similar products or construction services.

3.3 Building product / Construction product

Goods or services used during the life cycle of a building or other construction works.

In this PCR, the term “product” used alone relates not only to product systems but can also include service systems. In either case, the declaration is presented in a manner that clearly indicates whether the declaration applies to goods, or only to a part of the goods or packaging, or to an element of a service. See ISO 14025:2010, clause 7.2.2.

The manufacturing or processing of goods used as a building product may take place at the factory or on the construction site.

The use of services can occur at any stage of the life cycle of the building or other construction works.

Whereas ISO use ‘building product’, in this PCR the term ‘construction product’ is used. There is no difference in meaning intended between the two terms as defined above and the choice is based on the more common usage of ‘construction product’ in the UK and Europe.

3.4 Carbonation

The formation of calcium carbonate in products containing calcium oxide or calcium hydroxide (such as concrete) as a result of chemical reaction between carbon dioxide from the air with calcium hydroxide in the product.

3.5 Characterisation factor

Factor derived from a characterisation model which is applied to convert an assigned life cycle inventory analysis (LCI) result to the common unit of the category indicator.
3.6 Declared unit

Quantity of a construction product for use as a reference unit in an EPD, based on LCA, for the expression of environmental information needed in information modules, for example kg, m, m2, m3.

The declared unit shall only be used where the function and the reference scenario for the whole life cycle, at the building level, cannot be stated.

3.7 Functional equivalence

The comparability of one or more products or services using common functional performance criteria. It is considered in the context of a building or an assembly of construction products, and is the basis on which a functional unit can be defined.

3.8 Functional unit

Quantified performance of a product system for a construction product for use as a reference unit in an EPD based on LCA.

3.9 Gate

Point at which the construction product or material leaves the factory before it becomes an input into another manufacturing process or before it goes to the distributor, a factory or building site.

3.10 Generic data

Data that is publicly available, and may be average data or specific data.

3.11 Information module

Compilation of data to be used as a basis for a Type III environmental declaration, covering a unit process or a combination of unit processes that are part of the life cycle of a product.

3.12 Non-renewable energy

Energy from sources which cannot be replenished on a human time scale (fossil sources) for example coal, oil, natural gas and uranium.

3.13 Non-renewable resource

Resource that exists in a fixed amount that cannot be replenished on a human time scale. In the context of EN 15804:2012, this relates to a resource that could be used for energy but is used as a raw material, for example oil (petrochemicals) for polymer manufacture. Consequently, water is excluded from this indicator.

3.14 PCR review

Process whereby a third party panel verifies the product category rules.

3.15 Product category

Group of products that can fulfill equivalent functions.
3.16 Product category rules (PCR)

Set of specific rules, requirements and guidelines for developing Type III environmental declarations for one or more product categories. This BRE PCR applies to the product category “construction products”.

3.17 Programme operator

Body that conducts an ISO Type III environmental product declaration programme, such as BRE.

3.18 Radioactive waste

Waste containing radioactive material. Radioactive waste is categorised by the International Atomic Energy Agency (IAEA) as exempt waste (EW), low and intermediate-level waste (LILW), or high-level waste (HLW). LILW is further sub-divided according to the half-lives of the radionuclides it contains into “short lived” (less than 30 years) and long lived (more than 30 years). The IAEA classification of radioactive waste considers qualitative and quantitative factors including activity levels and heat content.

In this PCR the radioactive waste indicator described in EN15804:2012 is taken to represent the total mass of LILW and HLW. High level nuclear waste is reported as additional information because:

- The World Nuclear Association estimates that HLW accounts for over 95% of the radioactivity produced from electricity generation
- HLW is the most problematic waste to deal with and presents the greatest risks to humans and ecosystems
- HLW is the only category of radioactive waste from electricity generation that must be declared under the fuel mix disclosure requirements of European Directive 2003/54/EC

3.19 Reference service life

Service life of a construction product that is known or to be expected under a particular set, i.e. a reference set, of in-use conditions and which may form the basis of estimating the service life under other in-use conditions.

The reference service life is applied to the functional unit or declared unit. See EN 15804:2012, Annex A.

3.20 Renewable energy

Energy from renewable sources (typically non-fossil sources) for example solar, wind, hydro (excluding pumped-through hydro) and biomass.

3.21 Renewable resource

Resource that is grown, naturally replenished or cleansed on a human time scale, for example, trees in forests, grasses in grasslands and fertile soil. A renewable resource is capable of being exhausted, but may last indefinitely with proper stewardship.

In this PCR water has been excluded from the definition of renewable resource, and is only reported in the ‘net fresh water’ indicator described in EN 15804:2012.
3.22 Secondary fuel

Fuel recovered from previous use or from waste which substitutes primary fuels. See EN 15804:2012, clause 3.28, Notes 1, 2, 3 and 4.

3.23 Secondary material

Material recovered from previous use or from waste which substitutes primary materials. See EN 15804:2012, clause 3.29, Notes 1, 2 and 3.

3.24 Sequestration (of carbon)

The removal and long-term storage of carbon dioxide from the atmosphere through the use of natural carbon sinks, primarily in forests in the form of increasing plant biomass.

3.25 Service life

The period of time from construction/installation during which a building or its components meets or exceeds its performance requirements.

3.26 Specific data

Data representative of a product, product group or construction service, provided by one supplier.

3.27 Study period

The period of time over which the environmental impacts of a building or its components shall be measured.

3.28 Third party

Person or body that is recognised as being independent of the parties involved, as concerns the issues in question.

3.29 Type III environmental declaration / environmental product declaration (EPD)

Environmental declaration providing quantified environmental data using predetermined parameters and, where relevant, additional environmental information. The predetermined parameters are based on the ISO 14040 series of standards, which is made up of ISO 14040:2006 and ISO 14044:2006.

The additional environmental information may be quantitative or qualitative.

3.30 Waste

EN 15804:2012 defines waste as ‘substance or object which the holder discards or intends or is required to discard’.
4 Abbreviations

EPD Environmental Product Declaration
LCA Life Cycle Assessment
LCI Life Cycle Inventory
PCR Product Category Rules
RSL Reference Service Life
5 General Programme Information

5.1 Objectives
For the PCR to be used to produce EPD for construction products and services that:

1. Provide a measurable and verifiable data source for the assessment of the environmental performance of buildings.

2. Enable interested parties to compare the environmental impacts of different construction products as they are used within a building, based on units of equivalent functionality. EN 15804:2012, clause 5.3, on comparability of EPD for construction products sets out the strict requirements for comparison.

3. Provide a means of collecting relevant data for the preparation of building level tools for comparing the environmental impacts of construction products and compliant software tools.

5.2 Types of EPD with respect to life cycle stages covered
This PCR adopts the information module approach required by EN 15804:2012 (see Figure 5.1). There are three types of EPD based on this PCR, as shown in Table 5.1.

Table 5.1: The three types of EPD

<table>
<thead>
<tr>
<th>EPD Type</th>
<th>Life cycle stages included</th>
<th>Units</th>
<th>Use for comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cradle to gate</td>
<td>Covering product stage information A1 to A3 (raw material supply, transport, manufacturing of products, and all upstream processes from cradle to gate). This comprises the minimum of processes that shall be required in a declaration for compliance with EN 15804:2012</td>
<td>Declared unit</td>
<td>Shall not be used for comparison</td>
</tr>
<tr>
<td>Cradle to gate with options</td>
<td>Covering product stage information as a minimum, plus any other information modules from both the use stage and the end-of-life stage (B1 through to C4). Benefits and loads beyond the system boundary (Module D) may be included</td>
<td>Declared unit or functional unit</td>
<td>Shall not be used for comparison</td>
</tr>
<tr>
<td>Cradle to grave</td>
<td>Covering all of the life cycle stages as a minimum, including end-of-life at or beyond the study period. Benefits and loads beyond the system boundary (Module D) may be included</td>
<td>Functional unit</td>
<td>Can be used for comparison if the functional unit is equivalent</td>
</tr>
</tbody>
</table>
Figure 5.1: Illustration of mandatory and optional elements and information modules for construction products, adapted from EN 15804:2012.

<table>
<thead>
<tr>
<th>Life cycle stages</th>
<th>Type of EPD</th>
<th>Cradle to Gate</th>
<th>Cradle to Grave</th>
<th>Raw material supply</th>
<th>Transport</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Use</th>
<th>Maintenance</th>
<th>Repair</th>
<th>Replacement</th>
<th>Refurbishment</th>
<th>Operational energy use</th>
<th>Operational water use</th>
<th>Demolition</th>
<th>Transport</th>
<th>Waste processing</th>
<th>Disposal</th>
<th>Reuse / Recovery / Recycling potential</th>
<th>beyond the system boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
<td>M mandatory</td>
<td>O optional</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M for a declared unit</td>
<td>O for a declared unit</td>
<td></td>
</tr>
<tr>
<td>Reference Service Life to be included only if all scenarios are included</td>
<td></td>
</tr>
</tbody>
</table>
It is possible to have an EPD for a material (e.g. cement), for a product or component (e.g. brick or bricks and mortar), and for an assembly of products or components (a building element e.g. an external wall), which can then be used at both product level and building level assessments. Note that the EPD of an assembly of materials, products or components can incorporate the results of the EPD of all the constituent materials and construction products. This is described in section 5.4 (Modularity) in ISO 14025:2010.

5.3 Comparability of EPD of construction products

In principle, comparison of the environmental performance of construction products using EPD information shall only be carried out at the building level using the same functional unit in a complete life cycle (cradle to grave EPD), as it should be based on their use in and impacts on the building.

Comparison at sub-building level can also be carried out subject to conditions, provided the technical and functional performances are identical. See EN 15804:2012 and ISO 14025:2010 for further guidance. This PCR shall apply the same conditions as listed in EN 15804:2012, clause 5.3 and ISO 14025:2010, clause 6.7.2.

5.4 Additional Information

The following two categories of information which are not derived from LCA are addressed by this PCR:

Additional technical information, consisting of physical data characterising the product’s functional performance during the life cycle beyond the product stage of the life cycle, i.e. in construction, use, and end-of-life stages, shall be provided by the manufacturer where applicable. This information is used to support the consistent development of scenarios in respective modules for the evaluation of these life cycle stages at the building level.

Additional information on emissions to indoor air, soil and water during the use stage, describing release of dangerous substances to indoor air, soil and water which are not covered by impact assessment shall also be provided, subject to the availability of harmonised measurement methods as provided by Technical Committees of CEN, such as TC 351.

See section 7.3 and 7.4 in this PCR for further guidance on reporting of additional information.

5.5 Ownership, responsibility and liability for the EPD

The manufacturer (or group of manufacturers) is the sole owner, and has liability and responsibility for an EPD. See EN 15804:2012, clause 5.5.

5.6 Communication formats

EPD produced using this PCR can either be for business to consumer communication (formatted according to conditions listed in ISO 14025:2010) or for business to business communication (formatted in accordance with EN 15942:2011).
6 Product Category Rules for LCA

6.1 Product Category
This PCR document sets out the product category rules for all construction products. Where specific rules apply for particular groups, these shall be clearly stated.

6.2 Life Cycle Stages and their information modules to be included
As specified in Figure 5.1, the environmental information in a BRE EPD covering all life cycle stages (cradle to grave) shall be subdivided into the following information module groups:

- Product stage comprising:
 A1 – raw material supply, including processing of secondary material input
 A2 – transport of raw material and secondary material to the manufacturer
 A3 – manufacture of the construction products, and all upstream processes from cradle to gate
 Note: modules A1, A2 and A3 may be declared as one aggregated module A1 – 3

- Construction process stage comprising:
 A4 – transport of construction products to the building site
 A5 – the building installation/construction

- Use stage (related to building fabric):
 B1 – use of the installed product, service or appliance
 B2 – maintenance of the product
 B3 – repair of the product
 B4 – replacement of the product
 B5 – refurbishment of the construction product

- Use stage (related to operation of building):
 B6 – operational energy
 B7 – operational water use

- End-of-life stage comprising:
 C1 – demolition of the building/building product
C2 – transport of the demolition waste comprising the end-of-life construction product to waste processing facility

C3 – waste processing operations for reuse, recovery or recycling

C4 – final disposal of end-of-life construction product

• Benefits and loads beyond the system boundary:

 D – reuse/recovery/recycling potential evaluated as net impacts and benefits

The product stage (modules A1 – A3) comprises the minimum processes that shall be included in the EPD.

In order to evaluate the impacts of the product in the life cycle stages that depend on the building context, scenarios have to be defined to identify the specific conditions and assumptions of the evaluation. This is to ensure that the product data used in this product level assessment are applicable in a building level assessment. For example, the building type in which a carpet product is to be installed and the scope of the building assessment will determine the scenarios in the building life cycle, and these in turn determine the scenarios that shall be evaluated for the installation (A4 – A5), the use pattern (B1 – B7) and the end of life (C1 – C3) excluding final disposal (which will be product dependent). See EN 15978:2011 for more information on building life cycle stages scenario definition for building level assessment.

6.3 Calculation Rules for LCA – General aspects

6.3.1 Functional Unit

In conducting an LCA, a functional unit is a quantified performance of a product system under study, for use as a reference unit for the inputs and outputs of the system. This reference unit enables different product systems capable of performing the same function to be compared. To generate an LCA-based EPD for a construction product, the functional unit of a construction product is based on:

• The quantified, relevant functional use or performance characteristic of the construction product when integrated into a building, taking into account the functional equivalent of the building.

• The product’s reference service life (see 6.3.3 of this PCR) or required service life of the building, as this relates functional performance of a construction product over a relevant time period (study period).

The EPD shall state the conversion factors required to calculate between the functional unit and the declared unit (for example densities, unit volumes).

6.3.2 Declared Unit

The declared unit shall be applied in place of a functional unit when an EPD is based on a cradle to gate LCA, and, also on a cradle to gate with options LCA where suitable. The declared unit in the EPD shall be one of the unit types listed below:

• Mass (tonne), e.g. 1 tonne of brick.

• Area (m²), e.g. 1 square metre of carpet.

• Length (m), e.g. 1 metre of pipe.
6.3.3 Reference Service Life (RSL)

The reference service life of a product is considered within the context of its use in a building, and is relevant to the use stage assessment. In cradle to grave assessments some materials, components or building elements may be expected to need maintenance, refurbishment or replacement before the end of the study period. This is dealt with in the PCR by determining a reference service life for each material, component or building element, as informed by the manufacturer. The RSL depends on the functional performance of the product, the construction stage, and the reference conditions of the use stage. Therefore, the RSL can only be determined for a cradle to grave EPD or a cradle to gate EPD with options where modules A1 – A5 and B1 – B5 have been provided. The RSL shall be verifiable.

Using information provided by the manufacturer, the number of maintenance, refurbishment or replacement operations is calculated by considering the likelihood that the component will be replaced within the study period. This shall be taken into account in the EPD. Note that the RSL is not the same as the study period (see Section 3.24 in this PCR). See EN 15804:2012, Annex A (normative) for requirements and guidance on determining RSL.

In the context of a building level assessment, if a component in an element is expected to be replaced within the study period and can be replaced without removing the rest of the building element, then only the materials associated with that particular component will be replaced. If other components of the building element, or the entire element, must be replaced because of the shorter lived components, then all the relevant components or element will be replaced within the assessment, even if the materials removed have a potentially longer lifetime.

6.3.4 System Boundaries

System boundaries have been established in accordance with the provisions of ISO 14044:2006, 4.3.3.4 and EN 15804:2012, 6.3.4. This BRE PCR covers the following types of EPD:

- Cradle to gate
- Cradle to gate with options
- Cradle to grave

The EPD shall present data covering the relevant life cycle stages as illustrated in Figure 5.1.

The environmental information of an EPD covering all life cycle stages (cradle to grave) shall be subdivided into the information modules groups A1 – A3, A4 – A5, B1 – B5, B6 – B7, C1 – C4, and Module D if included.

6.3.4.1 Product stage, information modules A1 – A3

The product stage shall include the following information modules as stated in EN 15804:2012, clause 6.3.4.2:

- A1, raw material extraction and processing, and the processing of secondary material input (e.g. recycling processes)
• A2, transport of raw materials and inputs to the manufacturer
• A3, manufacturing of the products, and packaging

This stage includes the provision of all materials, products and energy, as well as waste processing up to the end-of-waste state (i.e. no longer considered a waste material, as defined in EN 15804:2012, clause 6.3.4.5) or disposal of final residues during the product stage. In addition to the outputs of the product stage, the system boundary also includes any other output leaving the system that has a value associated with it. Such outputs shall be identified as co-products of the system.

Modules A1, A2 and A3 are typically declared as one aggregated module A1 – A3, but may be declared separately.

The contribution of capital equipment and infrastructure (e.g. a factory building or manufacturing equipment, roads, pipelines) is not normally considered in LCA and is not included here. Maintenance of equipment is also not included in the LCA except for frequently consumed items which are included in the inventory if they meet the data 1% cut-off rule or cannot be excluded according to the rules in 6.3.5 below.

All energy used in factories and factory support offices is included. Head offices and sales offices etc. are excluded. For renewable energy schemes, see 6.3.11 below.

6.3.4.2 Construction process stage, information modules A4 – A5

The construction process stage shall include the following information modules as stated in EN 15804:2012, clause 6.3.4.3:
• A4, transport of construction product from the manufacturer (factory gate) to the building site
• A5, installation into the building, and wastage from installation

This stage also includes waste processing up to the end-of-waste state or disposal of final residues. In addition, the energy from storage of construction products, i.e. provision of heating, cooling, humidity control, etc. where applicable may be included where data is available. The transport and installation of the construction product are dependent on the context of the building where the construction product is used.

For a building level assessment, ancillary products and any energy or water required for installation as well as on-site operations for the construction product shall be included.

6.3.4.3 Use stage (related to the building fabric), information modules B1 – B5

The use stage relating to the building fabric shall include the following information modules as stated in EN 15804:2012, clause 6.3.4.4.2:
• B1, use or application of the installed product
• B2, maintenance
• B3, repair
• B4, replacement
• B5, refurbishment
Information module B1 refers to emissions to the environment, for example release of substances from painted surfaces and these shall be reported as additional information on release of dangerous substances to indoor air, soil and water once horizontal measurement standards have been published by CEN TC 351 (see NOTE 1 in EN 15804:2012, clause 6.3.4.4.2). Note that known emissions to the environment during the application of products such as painting will be reported as part of construction (installation) process stage, A5 above.

At the product level, maintenance (B2) covers all actions for maintaining the product as installed in a building during the product’s service life, for example cleaning of floor finish products. The impacts of this stage are therefore directly related to the context of the building, and shall be assessed with defined scenarios. This also applies to repair (B3), replacement (B4) and refurbishment (B5); and the assessment shall include production, transportation, use of energy and water, and any associated wastage and end-of-life processes.

6.3.4.4 Use stage (related to the operation of the building), information modules B6 – B7

The use stage related to the operation of the building shall include the following information modules as stated in EN 15804:2012, clause 6.3.4.4.3:

- B6, operational energy use
- B7, operational water use

The boundary of these modules shall include the energy and water use during the operation of the product, together with its associated environmental aspects and impacts including processing and transportation of any waste arising on site from the use of energy/water. This should cover integrated technical building systems for building services elements, e.g. for heating, ventilation and cooling, lighting, domestic water services, communication and IT, internal transport (e.g. lifts), fire and security.

Operational energy use can be obtained for example using Standard Assessment Procedure (SAP) for energy ratings for dwellings, and the impacts of the life cycle stages of the equipment required to supply energy to the building shall be assessed in the respective modules A1 – A5, B2 – B5, and C1 – C4.

Operational water use covers the study period for the assessment, beginning from handover of the building to the user.

6.3.4.5 End-of-life stage, information modules C1 – C4

As stated in EN 15804:2012, clause 6.3.4.5, the end-of-life stage of a construction product starts when it is replaced, dismantled or deconstructed from the building (or at the building’s end-of-life) and does not provide any further functionality. Products which reach the end of life during the construction stage (A4 – A5) and the use stage (B1 – B7) have their end-of-life considered within the life cycle stage in which it arises. The treatment of end-of-life of products in any life cycle stage is assessed following the procedures set out in this section.

This stage includes the following information modules:

- C1, de-construction, demolition
- C2, transport to waste processing
- C3, waste processing for reuse, recycling, and energy recovery
• C4, disposal and the associated processes

During the end-of-life stage, all outputs from the system (i.e. leaving the building) are considered to be waste until they reach the end-of-waste state. The end-of-waste state is reached when any such material or output complies with the following criteria (see EN 15804:2012, clause 6.4.3):

• It is commonly used for specific purposes
• There is an existing market or demand for it
• It fulfils technical requirements for specific purposes
• Its use will not lead to overall adverse effects

The benefits and loads from the use of end-of-waste state materials in another product system (i.e. beyond the system boundary) are reported in Module D, see 6.3.4.6 in this BRE PCR. Note that materials for energy recovery are materials that have reached the end-of-waste state and are used in an energy recovery process with an energy efficiency rate (of the process) higher than 60%.

The potential benefits from utilising energy arising from a waste disposal process in information module C4, e.g. incineration of waste and landfill gas can also be presented in Module D, using current average substitution processes. See EN 15804:2012, clause 6.3.4.5.

6.3.4.6 Benefits and loads beyond the product system boundary, information Module D

The stage shall include the information module as stated in EN 15804:2012, clause 6.3.4.6. The system boundary between modules C and D is set where the system outputs (materials, products or construction elements) have reached the end-of-waste state.

Module D covers the net benefits and loads arising from the reuse of products or the recycling or recovery of energy from end-of-waste state materials resulting from the construction stage (A4 – A5), the use stage (B1 – B7) and the end of life stage (C1 – C4). Typically, any outputs leaving the system from modules A1 – A3 are accounted for as a co-product if they have a value associated with them or as a waste if there is no value associated with them. Consequently it is expected that there will generally be no Module D declarations arising from Modules A1 – A3. The figure below provides graphical guidance on the application of Module D.
Examples of secondary materials include metals and thermoplastics at end-of-life, while energy carriers include any combustible material which is fed into an energy recovery process that has process efficiency greater than 60%.

Module D is applied only to products/materials which substitute other materials or fuels in another product system (e.g. as secondary materials and energy carriers) and have reached the end-of-waste state. Further, Module D can only be calculated based on a specified scenario which is consistent with any other scenario for waste processing and is based on current average technology or practice. See EN 15804:2012, clause 6.4.3.3. The reuse, recovery or recycling scenario must be clearly stated in the EPD.

Double counting must be avoided by excluding flows of co-products, and by calculating the net output flows of the secondary material or fuel from the product system. The following is an example of net output flow calculation for a secondary material:

1. If a product, e.g. metal, has an output at the end of life of 0.8 kg of scrap, which is considered an end-of-waste state material from Module C4, this is the output flow of the system. If the recycling rate is 90%, then recycling this scrap implies replacing 0.72 kg of virgin input material in another system. The benefit of avoiding 0.72 kg virgin material production is presented in Module D. If the scrap needs further processing before being used in the new system, the associated burdens must be taken into consideration.

2. Now if the initial product had a scrap input of 0.5 kg per kg in its Module A, then only a net output flow of 0.8 – 0.5 = 0.3 kg is calculated, and using the same recycling rate of 90%, the benefit of avoiding 0.27 kg of virgin material is presented in Module D.

3. If the initial product had a scrap input of 0.9 kg per kg in its Module A, then a negative net output flow of 0.8 – 0.9 = -0.1 kg is calculated. This shall be presented as a load in Module D.
For further guidance in the calculation of the net benefits and loads in Module D, see EN 15804:2012, clause 6.4.3.3 and in this BRE PCR, clause 6.5.3.2. Module D does not affect the other modules as it is independent of other calculation rules.

6.3.5 Criteria for the exclusion of inputs and outputs

The criteria for the exclusion of inputs and outputs are to be applied as stated in clause 6.3.5 of EN 15804:2012.

The inventory process gathers all the inputs to the plant that are associated with a product, including product ingredients, packaging materials and consumable items. For many processes, a large number of substances and materials are used in very small quantities and it is unrealistic to gather data on all of these.

However, it is important that significant environmental effects are not omitted by ignoring low mass flows of substances. Analysis may later reveal that these substances do not significantly affect the overall result but it is important that data is provided to enable this conclusion to be drawn. To achieve this, the following conventions are applied:

In case of insufficient data or data gaps for a unit process, the cut-off criteria shall be 1% of the total mass input of that process. The total of neglected input flows per module shall be a maximum of 5% of energy usage and mass. The exception is if they have any of the following in which case they have to be included:

- Significant effects of or energy use in their extraction, their use, or disposal
- Are classed as hazardous waste

Mass balance checks ensure the inputs stated are sufficient to produce all the outputs, including waste arising. Where there are insufficient inputs to account for all outputs, the input inventories shall be adjusted proportionally to 100% to balance this deficit.

6.3.6 Selection of data

In general, a combination of generic and manufacturer-specific data shall be the preferred choice for use in calculating an EPD as follows:

- Specific or average data that has been derived from specific production processes shall be used in the production/manufacturing LCA. Specific data may also be used for upstream processes (raw material production) where available
- Generic data shall be used for all other upstream and downstream processes that are beyond the control of the manufacturer (i.e. raw material production, construction product installation, use and end-of-life respectively)

Where a cradle to grave EPD has been calculated using generic data for downstream processes, e.g. for the disposal scenario in the end-of-life stage, to ensure consistency and comparability, both the use stage and the end-of-life stages shall be based on the same additional technical information stated by the manufacturer for the development of the scenarios for the life cycle assessment. The technological, geographical and time period of the generic data used shall be documented in the project report (see CEN/TR 15941 for guidance on selection and use of generic data).
6.3.7 Data quality requirements
In accordance with ISO 14044:2006, 4.2.3.6, the quality of the data used to calculate the EPD shall be addressed in the project report. In addition, the specific requirements listed in EN 15804:2012, clause 6.3.7 shall apply for construction products. The most current, available data shall be used to calculate an EPD. The manufacturer-specific data shall cover a production period of 1 year and this data period shall be documented, and deviations from this data range shall be justified. Generic or specific data used for the calculations shall have been updated within the last 5 years for manufacturer-specific data and within the last 10 years for generic data.

For guidance on how to deal with data gaps refer to CEN/TR 15941.

6.3.8 Developing product level scenarios
Realistic and representative scenarios shall be based on relevant technical information and shall support the calculation of the information modules as shown in Figure 5.1 and the assessment of the environmental performance of a building (building level assessment) in construction, use and end-of-life stages. See EN 15804:2012, clause 6.3.8: a scenario shall be realistic and representative of one of the most probable alternatives. (If there are, e.g. three different applications, the most representative one, or all three scenarios shall be declared).

6.3.9 Units
SI units shall be used. Exceptions are:
- Resources used for energy input (kWh or MJ)
- Water use (cubic metres)
- Temperature (degrees Celsius)
- Time (minutes, hours, days, years)
- Transport (tonnes, kilometres)

6.3.10 Imports
The inputs and outputs attributed to imports of materials and products are, wherever possible, based upon analyses appropriate to the country of origin and include the energy of transportation. Where data for the country of origin are not available, the input and output data are based upon the most comparable product (internationally or domestically produced) with an addition made for the transportation from the country of origin.

6.3.11 Treatment of renewable energy purchase schemes
Many energy suppliers offer “Green Supply” tariffs to their customers. The structure of these tariffs, their relationship with carbon markets, regional and national energy regulation, and their eventual effectiveness in providing additional low impact energy varies widely. The significant potential for double counting of benefits makes their inclusion in EPD problematic.
In the UK for example, in February 2009 the UK energy regulator, Ofgem, published its final Green Supply Guideline\(^1\) for energy generators. The Guideline aims to establish a system of independent third party accreditation for Green Supply tariffs based on key principles of transparency, evidence of supply and additionality. The scope of the Guideline is for domestic and small business supply only but may be extended to cover industrial use in the future. However, at the time of writing no system of independent third party accreditation has been established for Green Supply in the UK and BRE is not aware of any such scheme operating outside the UK.

When calculating impacts associated with standard energy supply national or regional average energy models shall be used. This requirement may be reassessed if evidence from a credible accreditation system can be provided.

6.3.12 Treatment of onsite Low or Zero Carbon energy generation (LZC)

Benefits associated with onsite Low or Zero Carbon energy generation may be recognised in EPD produced according to this PCR subject to the following requirements:

- If the LZC installation is an “Accredited Renewable” then evidence that all certificates and tradable permits associated with the declared consumption have been accounted for must be provided. In the UK renewables installations are accredited by the energy regulator, Ofgem, via the Renewables and CHP Register. Relevant certificates and permits are Renewables Obligation Certificates (ROCs), Climate Change Levy Exemption Certificates (LECs) and Renewable Energy Guarantee of Origin (REGOs). Outside the UK equivalent evidence shall be provided.

- A written statement shall be provided to confirm that any benefits claimed have not been traded via UNFCCC mechanisms, emissions trading schemes (e.g. EU ETS) or voluntary carbon markets. If the installation received funds via market mechanisms then this must be declared and any associated benefits accounted for so as to avoid double counting.

- If the LZC installation is too small to qualify as an Accredited Renewable then evidence that the LZC product has been certificated by an accredited Certification Body shall be provided. In the UK such schemes include the Microgeneration Certification Scheme (MCS) and the CEN Solar Keymark scheme. UK Certification Bodies are accredited by United Kingdom Accreditation Services (UKAS). Outside the UK equivalent evidence shall be provided.

- Any benefits associated with net exports from onsite LZC generation (supply minus onsite demand) shall not be attributed to products covered by the EPD.

6.3.13 Treatment of Carbon Offset Schemes

Benefits associated with carbon offset schemes shall not be included in EPD conducted to this PCR.

6.4 Calculation Rules for LCA – Specific aspects

6.4.1 Carbon Storage (Sequestration)

Carbon sequestration refers to the long-term storage of carbon in biomaterials such as timber and agricultural products. In this PCR, carbon sequestration is evaluated in the product stage (A1 – A3) for

timber construction products. Both a mass balance and a carbon balance shall be carried out to ensure that the carbon dioxide equivalent emissions computed for the product system takes into account the actual carbon stored within the construction product.

Sequestered carbon is an inherent physical property, and the content leaving the system either in co-products, secondary materials, or materials for reuse, recycling, incineration or landfill disposal is considered when evaluating the carbon content of the construction product and the quantity of carbon dioxide needed to sequester that amount of carbon.

See Annex B of this PCR for guidance on calculating the amount of carbon sequestered in construction products.

6.4.2 Carbonation (of concrete)
This PCR takes into account the carbonation of calcium oxide (CaO) or calcium hydroxide (Ca(OH)$_2$) within construction products. The reaction is only for surfaces exposed to air, and is dependent on the porosity and the strength of the product.

For products containing pure lime, 100% of the calcium oxide is assumed to carbonate within a short time after construction / installation. Therefore, the carbonation of lime is considered in the construction stage (A5) for both quick lime and hydrated lime, and is equivalent to the carbon dioxide expelled from the calcium carbonate in making the lime.

For products containing cementitious material the amount of carbonation can be calculated for both low-strength and high-strength concrete, mortars, and screeds, taking into account the effect of the strength of the concrete on the rate of carbonation. This is evaluated in the use stage (B1).

Recycled concrete is also expected to continue to carbonate, as well as end-of-life concrete that has been disposed of in landfill (end-of-life stage, C4) as the concrete is crushed and exposed to air. Consequently a scenario can be presented where recycled concrete is generated and Module D is reported. The amount of carbonation is based on the typical particle size, the existing level of carbonation and the likely depth of further carbonation. Following a reduction in particle size, the amount of carbonation is expected to increase in the secondary life of concrete, and a secondary life factor is introduced to take into account the carbonation over an assigned secondary life period.

See Annex C of this BRE PCR for further guidance on calculating the carbonation of concrete.

6.5 Inventory Analysis

6.5.1 Collecting data
Data collection shall follow the guidance provided in EN ISO 14044:2006, 4.3.2

In addition to manufacturing process data (covering 1 year of production, deviations from this period shall be justified), manufacturers shall provide a process flow diagram, including any major transportation stages with a clearly marked system boundary to indicate included and excluded processes. The resulting inventory is checked for balance in mass and water (including taking into account of evaporation of water).

The total mass flowing into the system boundary must be accounted for with an equivalent mass flow out of the system boundary. The material input and output, the water use and the energy consumption data are checked for appropriateness compared to known systems.
6.5.2 Calculation procedures
The calculation procedures described in EN ISO 14044:2006 and EN 15804:2012 shall apply. The same calculation procedure shall be applied consistently throughout the study.

6.5.3 Allocation of input flows and output emissions

6.5.3.1 Allocation of material and energy flows
Allocation procedures shall be according to ISO 14044:2006, clause 4.3.4, and the rules stated in EN 15804:2012 are based on the ISO 14044 guidance. However, the basic procedures and assumptions used in ISO 14044 have been refined in order to reflect the goal and scope of EN 15804 and EN 15643-2:2011. For multiple products (co-products), the materials, energy flows and associated emissions are allocated to the different products as shown in Figure 6.2 by process subdivision, appropriate physical property, or on the basis of revenue contribution. In the Figure, %R is percentage of revenue generated.

This allocation hierarchy also applies to process wastes from the product stage (A1 – A3), which are sold on for subsequent reuse or value recovery, as process wastes are considered as co-products if they have reached the end-of-waste state. Any waste processing that occurs in any module of the product system under study is included in the system boundary of the respective module, i.e. the impacts are allocated within the life cycle stage that generates them. Therefore, this allocation procedure is not applicable to wastes from the other stages (A4 – C4). The net impacts of which can be reported in Module D. See 6.5.3.2 of this PCR.
Examples of physical property for allocation include mass, volume or surface area, etc. For economic allocation (allocation by value), a percentage revenue contribution of less than 1% is considered as very low.

6.5.3.2 Allocation procedure for future material and energy recovery

The end-of-life system boundary of the product system is set where the system outputs (e.g. materials, products or construction elements) have reached the end of waste state. When a material leaves the system boundary at the end-of-waste state in Modules A4 – C4, the potential loads and benefits of net flows (see 6.3.4.6 of this PCR, and EN 15804:2012 clause 6.4.3.3) of reusable products, recyclable materials and/or useful energy carriers leaving the product system can be declared in Module D based on a specified scenario (see EN 15804:2012, clause 6.4.3.3). This scenario shall be consistent with any other scenario for waste processing and be based on current average technology or practice.

The method for calculating the net impacts is detailed in clause 6.4.3.3 of EN 15804:2012.
6.6 Impact Assessment

As specified in the modification to EN 15804:2012 clause 6.5, the impact assessment shall be carried out for the following impact categories using baseline characterisation factors from CML – IA version as required by EN 15804:2012:

- Global Warming (Climate Change)
- Ozone Depletion
- Acidification of Soil and Water
- Eutrophication
- Photochemical Ozone Creation
- Depletion of Abiotic Resources (Elements)
- Depletion of Abiotic Resources (Fossil)
7 Content of the Environmental Product Declaration

7.1 Declaration of general information

All EPD issued using this PCR shall follow the format presented here, in line with EN 15804:2012 clause 7, and shall include the parameters identified in this PCR:

a) The name, address, and a description of the manufacturer(s)

b) The description of the construction product’s use and the functional or declared unit of the construction product to which the data refers, and any relevant product performance standards

c) Construction product identification by name (e.g. including production code) and a simple visual representation of the building product to which the data relates

d) A description of the main product components and or materials; to enable the user of the EPD to understand the composition of the product as delivered and also to support safe and effective installation, use and disposal of the product

e) Name of the programme used and the programme operator’s name, address, logo and website

f) The reference for the PCR

g) The date the declaration was issued and the 5 year period of validity

h) Information on which stages are not considered, if the declaration is not based on an LCA covering all life cycle stages

i) A statement that EPD of construction products from different programmes may not be comparable, unless they comply with EN 15804. For information on specific circumstances in which EPD can be used for comparison, see EN 15804:2012, clause 5.3

j) Where an EPD is declared as an average environmental performance for a number of products, a statement to that effect shall be included in the declaration together with a description of the range or variability of the life cycle impact assessment (LCIA) results if significant

k) The site(s), manufacturer or group of manufacturers for whom the EPD is representative

l) The declaration of material content of the product shall list as a minimum substances contained in the product that are listed in the “Candidate List of Substances of Very High Concern for authorisation” when their content exceeds the limits for registration with the European Chemicals Agency. See EN 15804:2012, clause 7.1 (k), Notes 2 and 3

m) Information on where explanatory material may be obtained

n) Demonstration of verification of EPD according to ISO 14025:2010, as shown in Table 7.1 below, shall be completed and reproduced in the EPD:
Table 7.1: Demonstration of verification

<table>
<thead>
<tr>
<th>CEN standard EN 15804 serves as the core PCR<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent verification of the declaration, according to EN ISO 14025:2010</td>
</tr>
<tr>
<td>□ internal □ external</td>
</tr>
<tr>
<td>(Where appropriate<sup>b</sup>) Third party verifier:</td>
</tr>
<tr>
<td><Name of the third party verifier></td>
</tr>
</tbody>
</table>

^a Product category rules

^b Optional for business-to-business communication; mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4)

7.2 Declaration of environmental parameters derived from LCA

To illustrate the product system studied, the EPD shall contain a simple flow diagram of the processes included in the LCA. They shall be sub-divided at least into the life cycle stages of the product: production, and if applicable construction, use and end-of-life (see Figure 5.1). See EN 15804:2012, clause 7.2.1. The environmental impacts shall be declared and reported using the parameters and units shown in Table 7.2 below. All results shall be reported to 3 significant figures.

Table 7.2: Parameters for describing environmental impacts

<table>
<thead>
<tr>
<th>Impact Category</th>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Warming (Climate Change)</td>
<td>Global warming potential, GWP</td>
<td>kg CO₂ eq., 100 years</td>
</tr>
<tr>
<td>Ozone Depletion</td>
<td>Depletion potential of the stratospheric ozone layer, ODP</td>
<td>kg CFC 11 eq.</td>
</tr>
<tr>
<td>Acidification for Soil and water</td>
<td>Acidification potential of soil and water, AP</td>
<td>kg SO₂ eq.</td>
</tr>
<tr>
<td>Eutrophication</td>
<td>Eutrophication potential, EP</td>
<td>kg (PO₄)₃⁻ eq.</td>
</tr>
<tr>
<td>Photochemical Ozone Creation</td>
<td>Formation potential of tropospheric ozone, POCP</td>
<td>kg C₂H₄ eq.</td>
</tr>
<tr>
<td>Depletion of Abiotic Resources – elements</td>
<td>Abiotic depletion potential for non-fossil resources, ADP-elements</td>
<td>kg Sb eq.</td>
</tr>
<tr>
<td>Depletion of Abiotic Resources – fossil fuels</td>
<td>Abiotic depletion potential for fossil resources, ADP-fossil fuels</td>
<td>MJ, net calorific value</td>
</tr>
</tbody>
</table>
7.2.1 Other environmental indicators

The following environmental information, describing resource use, waste and other output flows, which is derived from LCI, but not assigned to the impact categories listed in Table 7.1, shall be included in the EPD as shown in Table 7.3 below.

Table 7.3: Other environmental information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource use</td>
<td></td>
</tr>
<tr>
<td>Use of renewable primary energy excluding renewable primary energy</td>
<td>MJ, net calorific value</td>
</tr>
<tr>
<td>resources used as raw materials</td>
<td></td>
</tr>
<tr>
<td>Use of renewable primary energy resources used as raw materials</td>
<td>MJ, net calorific value</td>
</tr>
<tr>
<td>Total use of renewable primary energy resources</td>
<td>MJ, net calorific value</td>
</tr>
<tr>
<td>Use of non-renewable primary energy excluding non-renewable primary</td>
<td>MJ, net calorific value</td>
</tr>
<tr>
<td>energy resources used as raw materials</td>
<td></td>
</tr>
<tr>
<td>Use of non-renewable primary energy resources used as raw materials</td>
<td>MJ, net calorific value</td>
</tr>
<tr>
<td>Total use of non-renewable primary energy resources</td>
<td>MJ, net calorific value</td>
</tr>
<tr>
<td>Use of secondary material</td>
<td>kg</td>
</tr>
<tr>
<td>Use of renewable secondary fuels</td>
<td>MJ, net calorific value</td>
</tr>
<tr>
<td>Use of non-renewable secondary fuels</td>
<td>MJ, net calorific value</td>
</tr>
<tr>
<td>Net use of fresh water</td>
<td>m3</td>
</tr>
<tr>
<td>Waste to disposal</td>
<td></td>
</tr>
<tr>
<td>Hazardous waste</td>
<td>kg</td>
</tr>
<tr>
<td>Non-hazardous waste</td>
<td>kg</td>
</tr>
<tr>
<td>Radioactive waste disposed (total low, intermediate and high level waste)</td>
<td>kg</td>
</tr>
<tr>
<td>Radioactive waste (high level waste)</td>
<td>kg</td>
</tr>
<tr>
<td>Other output flows</td>
<td></td>
</tr>
<tr>
<td>Components for reuse</td>
<td>kg</td>
</tr>
<tr>
<td>Materials for recycling</td>
<td>kg</td>
</tr>
<tr>
<td>Materials for energy recovery</td>
<td>kg</td>
</tr>
</tbody>
</table>
7.3 Scenarios and additional technical information

The selection of scenarios in the life cycle stages that depend on the building context should reflect the specific conditions and assumptions that support the use of the product data in both the product level and in a building level assessment (see Figure 5.1 in this BRE PCR).

These scenarios are for optional life cycle stages in a cradle to gate with options EPD, and if these optional stages are declared then the scenarios shall be specified and included in the EPD. For a cradle to grave EPD, all modules shall be calculated for specified scenarios and declared in the EPD.

Additional technical information supporting scenario development that is declared shall comply with EN 15804:2012 clause 7.3, and shall be declared separately from the LCA derived parameters. See Tables 7 – 12 in EN 15804:2012 for examples of technical information for different modules in the life cycle stages, including parameters and units.

7.4 Additional information on emissions to indoor air, soil and water during the use stage

Additional information on emissions to indoor air, soil and water during the use stage for construction products exposed to interior spaces of the building shall be required when horizontal measurement standards are published by CEN TC 351, as stated in EN 15804:2012 clause 7.4.

7.5 Aggregation of information modules

The indicators declared in the individual information modules of a product life cycle A1 to A5, B1 to B7, C1 to C4 and Module D as described in Figure 5.1 shall not be added up to give sub-total results for the modules A, B, C or D respectively. As an exception, information modules A1, A2 and A3 may be aggregated to give results for the product stage – the underlying data for these modules are not based on scenarios.

7.6 Format of BRE EN 15804 EPD

EPD template is available on Programme Operator (BRE) website, but the format to be expected is as shown:

<table>
<thead>
<tr>
<th>Company Information</th>
<th>Name and address details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product declared</td>
<td>Name and picture</td>
</tr>
<tr>
<td>EPD details</td>
<td>Declaration Number and period of validity</td>
</tr>
<tr>
<td></td>
<td>Demonstration of verification</td>
</tr>
</tbody>
</table>
General information
Unit of assessment, Life cycle stages covered, programme operator details, and comparability

Product information
Product description, declaration of material contents, manufacturing process, construction/installation, RSL and end-of-life as applicable, and any relevant product performance standards

LCA
Calculation rules, boundaries, process flow diagram, etc.

Results: The LCA results shall be provided for the following stages, where the indicator is not assessed this shall be stated accordingly:

<table>
<thead>
<tr>
<th>Product stage</th>
<th>Construction stage</th>
<th>Use stage</th>
<th>End-of-life stage</th>
<th>Benefits and loads beyond the system boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>A5</td>
</tr>
</tbody>
</table>

Benefits and loads beyond the system boundary

Results: LCA results shall be for the following:

Environmental impacts

<table>
<thead>
<tr>
<th>Environmental impacts</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global warming potential, GWP</td>
<td>kg CO₂ eq.</td>
</tr>
<tr>
<td>Depletion potential of the stratospheric ozone layer, ODP</td>
<td>kg CFC 11 eq.</td>
</tr>
<tr>
<td>Acidification potential of soil and water, AP</td>
<td>kg SO₂ eq.</td>
</tr>
<tr>
<td>Eutrophication potential, EP</td>
<td>kg (PO₄)³⁻ eq.</td>
</tr>
<tr>
<td>Formation potential of tropospheric ozone, POCP</td>
<td>kg C₂H₄ eq.</td>
</tr>
<tr>
<td>Abiotic depletion potential for non-fossil resources, ADP-elements</td>
<td>kg Sb eq.</td>
</tr>
<tr>
<td>Abiotic depletion potential for fossil resources, ADP-fossil fuels</td>
<td>MJ</td>
</tr>
</tbody>
</table>

Resource use

<table>
<thead>
<tr>
<th>Resource use</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of renewable primary energy resource, as energy source</td>
<td>MJ</td>
</tr>
<tr>
<td>Use of renewable primary energy resource, as raw materials</td>
<td>MJ</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>Total use of renewable primary energy resources</td>
<td>MJ</td>
</tr>
<tr>
<td>Use of non-renewable primary energy resource, as energy source</td>
<td>MJ</td>
</tr>
<tr>
<td>Use of non-renewable primary energy resource, as raw materials</td>
<td>MJ</td>
</tr>
<tr>
<td>Total use of non-renewable primary energy resources</td>
<td>MJ</td>
</tr>
<tr>
<td>Use of secondary material</td>
<td>kg</td>
</tr>
<tr>
<td>Use of renewable secondary fuels</td>
<td>MJ</td>
</tr>
<tr>
<td>Use of non-renewable secondary fuels use</td>
<td>MJ</td>
</tr>
<tr>
<td>Net use of fresh water</td>
<td>m3</td>
</tr>
<tr>
<td>Waste to disposal</td>
<td>Units</td>
</tr>
<tr>
<td>Hazardous waste</td>
<td>kg</td>
</tr>
<tr>
<td>Non-hazardous waste</td>
<td>kg</td>
</tr>
<tr>
<td>Radioactive waste (total)</td>
<td>kg</td>
</tr>
<tr>
<td>Radioactive waste (high level waste)</td>
<td>kg</td>
</tr>
<tr>
<td>Other output flows</td>
<td>Units</td>
</tr>
<tr>
<td>Components for reuse</td>
<td>kg</td>
</tr>
<tr>
<td>Materials for recycling</td>
<td>kg</td>
</tr>
<tr>
<td>Materials for energy recovery</td>
<td>kg</td>
</tr>
<tr>
<td>Export energy</td>
<td>MJ per carrier</td>
</tr>
</tbody>
</table>

Interpretation

Interpretation of LCA results, aided by graphical representation of environmental impacts; representativeness of results and applicability as appropriate

Additional Information

Scenarios and additional technical information, emissions and test details (if applicable), etc.

References

Applicable references must be stated, in addition to (i) BRE General Programme Instructions (ii) BRE PCR (iii) ISO 14025 and (iv) EN 15804
8 Project Report

The project report summarises the project documentation in a systematic and comprehensive way in order to support effective verification of the EPD.

The project report supports the data published in the EPD and sets out how the EPD was prepared in accordance with this PCR, including a list of all assumptions made. The project report shall record that the LCA based information and the additional information as declared in the EPD meet the requirements of EN 15804:2012. It shall be made available to the verifier with the requirements on confidentiality stated in ISO 14025:2010. The project report is not part of the public communication.

The project report shall follow the instructions given in ISO 14044 clause 5.2 and EN 15804:2012 clauses 8.2 and 8.3.

8.1 Data availability for verification

To facilitate verification it is considered good practice to make the following information available to the verifier, taking into account data confidentiality according to EN 15804:2012, clause 8.4:

a) Analysis of material and energy flows to justify their inclusion or exclusion, including mass and water balance
b) Quantitative description of unit processes that are defined to model processes and life cycle stages of the declared unit
c) Attribution of process and life cycle data to datasets of an LCA software (if used)
d) LCIA results per modules of unit processes, e.g. structured according to life cycle stages
e) LCIA results per production plant / product if generic data is declared from several plants or for a range of similar products
f) Documentation that substantiates the percentages and figures used for the calculations in the end-of-life scenario and the RSL values
g) Documentation that substantiates the percentages and figures (number of cycles, prices, etc.) used for the calculations in the allocation procedure, if it differs from the PCR.

8.2 Validity of EPD

EPD are valid for 5 years from the date of issue, after which the EPD shall be reviewed and verified.

An EPD does not have to be recalculated after 5 years if the underlying data has not changed significantly. A significant change is deemed to be a change in the product composition or production process which results in a change of greater than +/- 10% of any one of the declared parameters of the EPD.
Annex A – BRE PCR Peer review statement

The following experts in LCA and buildings have undertaken a critical review of this final draft PCR:

- Wayne Trusty, President, Wayne B Trusty & Associates Limited (Chair)
- Jane Anderson, Principal Consultant, PE INTERNATIONAL
- Sverre Fossdal, Verification Leader, The Norwegian EPD Foundation

Peer review statement

The review was performed according to Clause 8.1.2 of ISO 14025:2006(E), taking into consideration the EN 15804 standard. With the exception of the following points, the panel confirms that the PCR is in compliance with the referenced standards, and commends BRE for its work and its willingness to take account of and incorporate Panel comments throughout the process.

There are two areas where the panel could not confirm compliance. Because the PCR is still at a final draft stage and has not yet been released for stakeholder review or public comment, the panel cannot confirm consultation as required under ISO 14025:2010. Further, the BRE General programme of instructions have not yet been finalised and were not available to the review panel. As a result, the panel cannot confirm that the PCR meets the ISO 14025 requirement that it fulfil those instructions.
Annex B – Carbon Sequestration

This section describes how the BRE EN 15804 PCR deals with carbon sequestration in construction products made from biomaterials.

1. Introduction

In this PCR, carbon sequestration refers to the long-term storage of carbon in biomaterial construction products (such as timber, wood-based panels, plant fibres e.g. hemp and flax, plant oils e.g. palm and linseed, sheep’s wool etc.), and is considered in the product stage (information modules A1 – A3).

Sequestered carbon is an inherent physical property and, therefore, only physical allocation shall be used. Furthermore, sequestered carbon shall be calculated as only that present in the biomaterial in the finished construction product (declared or functional unit), and not that sequestered in the amount of biomaterial input required to make the product. The carbon balance of the producing system is currently excluded from the assessment, since there is not yet sufficiently robust information available to enable its contribution to be included.

The carbon content (C_f) used for the calculation of sequestered carbon in the product must be documented and justified.

Sequestered carbon will be assumed to remain in the product for the product’s service life and no carbon storage benefit scenarios will be allowed2. Appropriate models will be applied for the disposal routes for the product arising during life cycle stages B and C; these models will account for the releases associated with the sequestered carbon, e.g. the landfill model will address emissions including CO$_2$ and methane with the emissions for landfill in the UK adapted according to GasSim3.

GHG emissions associated with land use change will be included according to the Intergovernmental Panel on Climate Change’s (IPCC) Guidelines for National Greenhouse Gas Inventories. These impacts shall be allocated according to the hierarchy set out in Figure 6.2.

2. Calculating CO$_2$ eq. emissions

Example for Solid Timber:

Each carbon atom within the timber construction product has been sequestered from a carbon dioxide molecule in the atmosphere. If the carbon content of the product is known, then the amount of carbon sequestered in the product can be calculated. The sequestering of carbon requires the absorption of CO$_2$; this implies that to sequester 1 atom of carbon needs the uptake of 1 molecule of CO$_2$.

An example of the calculation for the amount of CO$_2$ required to produce a given mass of timber is presented below:

2 prEN 16485:2012 currently includes a technical scenario for calculating a carbon storage benefit.

3 http://www.gassim.co.uk/
Mass of CO₂ sequestered \[= m_{\text{dry}}(\text{timber}) \times C_f \times \frac{m.m_{\text{CO₂}}}{m.m_{\text{C}}} \] Eqn. 1

Where \(C_f \) = percentage of carbon in dry matter, for timber = 0.5 (50%)

\(m.m_{\text{CO₂}} \) = molecular mass of CO₂ (44)

\(m.m_{\text{C}} \) = atomic mass of carbon (12)

\(m_{\text{dry}}(\text{timber}) \) = dry weight of the timber in the finished product. If the moisture content \(m_c \) (as a decimal) and the wet weight \(m_{\text{wet}} \) of the timber are known, \(m_{\text{dry}} = m_{\text{wet}} / (m_c + 1) \)

By substituting for the masses of carbon and CO₂, Eqn. 1 above becomes:

Mass of CO₂ sequestered \[= m_{\text{dry}}(\text{timber}) \times 0.5 \times \frac{44}{12} \]

\[= m_{\text{dry}}(\text{timber}) \times 1.833 \] Eqn. 2

For example, using Eqn. 2 above, the amount of CO₂ sequestered in 1 m³ of timber with a density of 370 kg/m³ at 12% moisture content (dry mass basis) is 605.6 kg. For this PCR, this amount of CO₂ in air shall be included as a negative emission of biogenic CO₂ to the total CO₂ equivalent emissions of the respective timber construction product for the calculation of GWP.

4 The moisture content of timber and wood-based panels is typically calculated on a dry mass basis. Paper and some wood-based panels sometimes used a wet mass basis for moisture content (i.e. dry material + water = 100%). For a wet mass basis moisture content, \(m_{\text{dry}} = m_{\text{wet}} (1 - m_c) \)
Annex C – Carbonation of products containing calcium oxide/calcium hydroxide

This section describes how the BRE EN 15804 PCR deals with the carbonation of calcium oxide within construction products.

1. Introduction

The BRE PCR takes into account the carbonation of calcium oxide (CaO) within products containing lime. The reaction is only for surfaces exposed to air, and is dependent on the porosity and the strength of the concrete product, and particle size (for crushed concrete products). Different assumptions have been made for different products.

2. Products Containing Lime

For products containing pure lime, 100% of the CaO is assumed to carbonate within a short time after construction/installation in the building. Therefore, the carbonation of lime is considered in the construction stage (information module A5) for both quick lime and hydrated lime. The amount of carbonation is equivalent to the CO$_2$ expelled from the calcium carbonate in making the lime.

3. Virgin Products Containing Cementitious Material

The amount of carbonation for cement based products has been calculated based on the approach provided in a Danish report “Guidelines- Uptake of carbon dioxide in the life cycle inventory of concrete”5, and from information supplied by the Concrete Centre in the UK. This document can be obtained from the Concrete Centre or BRE.

The approach covers two aspects: the depth of carbonation which can be expected in different elements and the amount of carbonation where it occurs. For products containing cementitious material, the amount of carbonation can be calculated for both low-strength and high strength concrete, mortars, and screeds, taking into account the effect of the strength of the concrete on the rate of carbonation. This is evaluated in the use stage (information module B1).

Based on results from the study, and advice from the Concrete Centre, concrete products have been split into two groups. For either group, the assumptions about the relative rate of different types of products are similar. For all concrete it is the area exposed rather than weight of the material that is the key factor in determining how much CO$_2$ will be absorbed.

3.1 Group 1

For the first group, covering concrete blocks, low strength concrete and mortars and screeds, the assumption is that the total depth of the product will carbonate within the building lifetime. This is based on estimates provided within the Danish report which give a depth of carbonation for ‘sheltered’ and indoors’

5 Kirsten Pommer & Claus Pade, “Guidelines- Uptake of carbon dioxide in the life cycle inventory of concrete”, Danish Technological Institute, October 2005 prepared as part of the Nordic Innovation Centre Project, “CO$_2$ Uptake During the Concrete Life Cycle”
locations of 97 mm over 60 years. Since carbonation occurs from both sides of the block, the total theoretical depth of carbonation would be approximately 200 mm, which is greater than the depth of most blocks, low strength concrete and mortars. For screeds, most are less than 100 mm thick and will therefore carbonate even though only one face is exposed.

The amount of carbonation (kg) per m3 of concrete (i.e. amount of CO$_2$ reabsorbed through carbonation) is therefore based on the percentage of CaO which will carbonate and the amount of CaO within the product, see Eqn. 1 below. For these products, based on data provided by the Concrete Centre, the assumption is that 63% of the CaO will carbonate. The amount of CaO can be calculated from the amount of cement within the concrete product, the percentage of clinker within the cement and the percentage of CaO within the clinker, see Eqn. 2.

\[
\text{Carbonation (kg/m}^3\text{)} = 0.63 \times M_{\text{CaO}} \times \frac{m.m_{\text{CO}_2}}{m.m_{\text{CaO}}}
\]

Eqn. 1

Where 0.63 = amount of CaO that will carbonate

\[
m.m_{\text{CO}_2} = \text{molecular mass of CO}_2 (44)
\]

\[
m.m_{\text{CaO}} = \text{molecular mass of CaO (56)}
\]

\[
M_{\text{CaO}} = \text{mass of CaO within the concrete product (kg/m}^3\text{), obtained as shown below:}
\]

\[
\text{Mass of CaO, } M_{\text{CaO}} = Q_{\text{Cem}} \times \% C_{\text{Cem}} \times \% CaO_c
\]

Eqn. 2

Where \(Q_{\text{Cem}} \) = amount of cement in the concrete (kg/m3)

\[
\% C_{\text{Cem}} = \text{percentage of clinker in cement (80% for ready mix, 90% for precast and paving)}
\]

\[
\% CaO_c = \text{percentage of CaO within clinker (65%)}
\]

By substitution, Eqn. 1 above becomes

\[
\text{Carbonation (kg/m}^3\text{)} = 0.63 \times Q_{\text{Cem}} \times \% C_{\text{Cem}} \times \% CaO_c \times 0.65 \times \frac{44}{56}
\]

Eqn. 3

If \((0.63 \times 0.65 \times \frac{44}{56})\) in Eqn. 3 above is replaced by ‘\(z \)’, then the equation can be re-written thus:

\[
\text{Carbonation (kg/m}^3\text{)} = z \times Q_{\text{Cem}} \times \% C_{\text{Cem}}
\]

Eqn. 4

3.2 Group 2

The second group covers high strength ready mix and precast concrete and paving.
For these products, because the strength of the concrete is higher, the amount of carbonation is less during the building lifetime, and the Danish Guidelines provide an estimate of the depth of carbonation expected, and therefore factors which can be used to provide indicative carbonation and mass of carbon dioxide reabsorbed for various elements. Additionally, where concrete is recycled or landfilled (10\% of concrete arising), further carbonation is assumed to take place as the concrete is broken up and exposed to air. This PCR attributes the carbonation that takes place for recycled concrete within the EPD for the recycled concrete (see Section 4 below). For concrete that is landfilled, this carbonation is attributed to the original product.

The amount of carbonation within crushed landfilled concrete is based on the typical particle size, the existing level of carbonation and the likely depth of further carbonation. The Concrete Centre provided BRE with Secondary Life Factors (E) to take account of the carbonation of landfilled concrete over a 100 year secondary life, allowing a longer period for the remaining CaO to carbonate, see table below. The mass of CO$_2$ absorbed (kg) for these high strength concrete layers, as a function of the area exposed, is therefore calculated as shown in Eqn. 4:

\[
\text{Carbonation} = \left(K \times S \times \sqrt{SP}\right) \times \left(z \times Q_{\text{cem}} \times \%C_{\text{cem}}\right) \times E \quad \text{Eqn. 4}
\]

Where $K =$ depth of carbonation (m)
$S =$ surface area (m2)
$SP =$ study period, 100 years
$E =$ Secondary Life Factor to take account of carbonation of concrete in landfill at EOL

Carbonation in ready mix, precast, and paving concrete is calculated using Eqn. 4 as follows, where:

<table>
<thead>
<tr>
<th></th>
<th>Ready Mix</th>
<th>Precast</th>
<th>Paving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth of carbonation (m)</td>
<td>0.00125</td>
<td>0.00233</td>
<td>0.001</td>
</tr>
<tr>
<td>Quantity of cement (kg/m3)</td>
<td>290</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>% clinker in cement</td>
<td>80</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Secondary Life Factor, E</td>
<td>2.02</td>
<td>1.39</td>
<td>1.67</td>
</tr>
</tbody>
</table>

1m^2 of ready mix
$= \left(0.00125 \times 1 \times \sqrt{100}\right) \times \left(z \times 290 \times 0.8\right) \times 2.02 = 1.88\text{kgCO}_2$

1m^2 of precast
$= \left(0.00233 \times 1 \times \sqrt{100}\right) \times \left(z \times 350 \times 0.9\right) \times 1.39 = 3.28\text{kgCO}_2$

1m^2 of paving
$= \left(0.001 \times 1 \times \sqrt{100}\right) \times \left(z \times 300 \times 0.9\right) \times 1.67 = 1.45\text{kgCO}_2$

For concretes using cement replacements, it is necessary to include a correction factor. Table 4.3 of the Danish report provides correction factors, and by extrapolation from the table, the following factors are applied to high strength concretes using pulverised fuel ash (PFA) and ground granulated blast furnace slag (GGBS):
β 30% PFA 30: 10% higher (i.e. multiply by 1.10)
β 50% GGBS: 25% higher (i.e. multiply by 1.25)

4. Crushed Concrete for recycling

Concrete which is recycled as either aggregate or hardcore is expected to continue to carbonate. The amount of carbonation within recycled concrete is based on the typical particle size, the existing level of carbonation and the likely depth of further carbonation.

For concrete which is recycled as hardcore, the average particle size has been assumed to be 150mm in diameter (data from The Concrete Centre). For buried infrastructure which is where we assume hardcore is used, the depth of carbonation is $0.75\times\sqrt{\text{year}}$ (from the Danish report) which over 100 years means that 73% of the concrete will not be able to carbonate, assuming uniform carbonation around the particle. However the existing level of carbonation of concrete post demolition needs to be considered, as concrete which has already carbonated cannot carbonate again. BRE has taken the amount of carbonation which has already taken place as 5% at demolition – this is based on the amount of carbonation within a typical m3 of RMC, paving or precast compared to the maximum possible.

The amount of carbonation for concrete recycled as hardcore is therefore reduced by 75% to account for the concrete within the 150mm diameter particles which will not carbonate, and by 5% to account for the concrete which has already carbonated. BRE has taken 200 kg/m3 as the typical amount of cement clinker per m3. The amount of carbonation for recycled concrete is therefore obtained by substituting in Eqn. 3 as shown below:

$$\text{Carbonation} = 25\% \times 95\% \times z \times Q_{\text{Cem}} \times \% C_{\text{Cem}}$$

Where $Q_{\text{Cem}} \times \% C_{\text{Cem}} = 200$ kg/m3, carbonation for recycled concrete is:

1m3 of recycled concrete $= 0.25 \times 0.95 \times z \times 200 = 15.3 k_{\text{CO}_2}$

Note: for non-concrete hardcore there is no carbonation, and for hardcore sourced from low strength concretes or blocks, there will also be no carbonation as the concretes will have fully carbonated during use.

For concrete that is recycled as graded aggregate, the particle sizes are much smaller. Data from a WRAP report were used to estimate the typical particulate sizes. All particles 14mm and smaller would be able to carbonate, with larger particles carbonating to varying degrees, giving a total ability to carbonate of 91% if the carbonation rate for buried infrastructure is used.

The amount of carbonation for concrete recycled as graded aggregate (not within concrete) is therefore reduced by 9% to account for the concrete within the different diameter particles which will not carbonate, and by 5% to account for the concrete which has already carbonated. BRE has taken 200 kg/m3 as the

8 C R Sowerby, TRL Limited, “Low-strength Concrete Ground Engineering Applications for Recycled and Secondary Aggregates”, WRAP, June 2004, Table 5.1
typical amount of cement clinker per m3. Again, using Eqn. 3, and where \(Q_{\text{Cem}} \times \%C_{\text{Cem}} = 200 \text{ kg/m}^3\), the amount of carbonation for concrete recycled as graded aggregate is obtained as follows:

\[
1 \text{m}^3 \text{ of Recycled concrete as graded aggregate } = 0.91 \times 0.95 \times z \times 200 = 55.6 \text{kg CO}_2
\]

For concrete that is recycled as aggregate into concrete (i.e. recycled concrete aggregate, RCA), the rate of carbonation will relate to the type of concrete. For low strength concretes, the assumption is that the concrete will still fully carbonate. For high strength concretes, the uncarbonated cement within the RCA will be added to the amount of cement within the concrete to calculate the additional carbonation. Taking 20% replacement of coarse aggregate, approximately 240 kg of RCA would be used per m3, which will increase the Cement content, and therefore the typical amount of carbonation by 10%. This factor will therefore be used for concretes containing 20% RCA.