BRE FIRE CONFERENCE 2015

11th June 2015
Water mist systems as an alternative to sprinklers

BRE Fire Conference 2015
11th June 2015
Dr Louise Jackman
Suppression Team, BRE Global
Introduction

1. Fundamentals
2. Standards
 - Design, installation and maintenance
 - Fire performance tests
3. System verification
 - Component examination
4. Summary
Fundamentals
To extinguish a fire:

- Remove heat
- Remove oxygen
- Remove fuel
- Inhibit flame chemistry
Why is water so efficient?

– Water has one of the highest latent heat of vaporisation, 2256 kJ/kg and specific heat capacity, 4.2 kJ/(kg·K)
– Heat transfer for water to steam, 1 litre of water ≈ 2600 kJ
– 1,600 x volume expansion liquid to steam

– 1,900 sprinkler drops (1mm), 1 litre of water or 15 million watermist droplets (50μm)
Why is watermist so efficient?

- Watermist droplets present ≈ 60 times greater surface area
 - results in increased rate of heat absorption & evaporation
- Watermist droplets have significantly increased exposure time in fire/smoke/airflow
 - 1 mm drop falls @ 1.4 m per s
 - 50 μm droplet falls @ 0.3 m per s
Extinguishing systems – flammable liquids (Class B)

- Watermist spray applied onto potential large flaming fire hazards in small enclosures
 - Rapid droplet evaporation
 - Heat removal (flame, fuel), radiation barrier
 - Rapid water vapour production
 - Oxygen displacement by steam
 - Sustained attack
 - Droplets contained and recirculated
 - Oxygen consumed by fire
 - Some fuel wetting
 - Momentum into/across flames

- Examples, Engine rooms, Deep fat fryers (where spray envelope creates a quasi small room)
Watermist Challenges

- Indirect spray – reduced water penetration into fire & fuel, wetting solid combustibles, wetting fuel
- Ventilation and buoyancy induced flows
- Reduced momentum, decrease drop size, increases influence by other flows
Suppression systems - solid combustibles (Class A fires) e.g. office, residential

- Volume protection by ceiling mounted automatic nozzles
- Works by inhibiting fire spread (heat transfer, radiation barrier, near flame water vapour), extinguishment is not generally possible
- Assisted by compartment, closed doors, ventilation off, minimal obstructions
- Challenged by deep-seated fires, obstacles, open spaces, tall ceilings, air flows
Critical design parameters, nozzle spacing and flowrate

- 6.25 m² spacing (5 mm/min)
- 9 m² spacing (3.5 mm/min)
Critical room parameters e.g. large open space vs compartment

- In open
 - 850° C above crib
 - Not control

- In compartment, open door
 - 120° C at ceiling
 - Control

- Nozzle offset from fire 1.8 m, manual extinguishment < 20 mins
Standards
Best practice
Example design

- Nozzle (detector, actuation)
- Pipe
- Pump
- Tank
- Switches
- Control panel
- Alarm
Standards

- DD 8489 Fixed fire protection systems, commercial and industrial watermist systems – *under revision (BS)*
- DD 8458 Fixed fire protection systems, residential and domestic occupancies – *under revision (BS)*
- LPS 1283 LPCB approval of fixed watermist systems for use in commercial low hazard occupancies within buildings

- FM Approval Standard 5560 – application specific
- NFPA 750 – general
- IMO A.800 - shipboard
- CEN/TS 14972 – not applied in UK
Design, installation and maintenance (DD8489, DD8458)

- General requirements
- Design and installation
 - Scope of application
 - Duration of protection
 - Pipework
 - Alarms
- Components
- Water supply
- Pumps, tanks and cylinders
- Commissioning
- Inspection and maintenance

Watermist system challenges:
- specialist nozzles
- small orifices
- range of pressures

Watermist systems are not interchangeable dependent on
The manufacturer’s design and installation manual
Fire test protocols (DD8489, DD8458)

- No generic design approach – e.g. water flux density covering a range of applications
- Watermist requires application specific fire performance tests
- Standard test protocols
 - Specified system design
 - Particular hazard type
- All tests shall be undertaken with the watermist system components
- Only when an application is not covered by an appropriate standard test protocol, should you need to conduct ad-hoc application specific tests
Fire test protocols, DD8489 – Class B

- Local Applications
- Combustion Turbines & Machine Spaces <80m³
- Industrial Oil Fryers
Fire test protocols, DD8489 – Class A

– Category 3 – 500 MJ/m²
– Category 1 & 2 – 150 MJ/m²
Fire test protocols, DD8458 – Class A

- Fire test protocol based on fire test for residential sprinklers BS 9252
 - e.g. ceiling heights, nozzle locations, additives
- With additional consideration for:
 - fire load positions
 - ventilation conditions
 - ceiling height (optional up to 5m)
System verification
Approvals
Approval methodology

- Approvals are based on evidence
- Compliance with standards
- Assessment of staff, processes and systems
- Periodic audits, including testing as appropriate
- Listing and approval
Watermist approval

- Component tests
- System verification
 - Design methodology assessment
 - Fire performance tests
- Certification assessment
Component tests

<table>
<thead>
<tr>
<th>Water nozzles</th>
<th>Water pumps</th>
<th>Water strainers and filters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water control valves</td>
<td>Water tank and valves</td>
<td>Water pipe hangers</td>
</tr>
<tr>
<td>Water check valves</td>
<td>Water flow, level pressure switches</td>
<td>Manual release</td>
</tr>
<tr>
<td>Water pipe, fittings and couplings</td>
<td>Water manifold</td>
<td>Water additive</td>
</tr>
</tbody>
</table>

- Examination
- Marking
- Strength test
- Internal pressure test
- Leakage test
- Corrosion tests
- Function tests
- Operation tests
- Long term ageing tests
- Thermal shock test
- Nozzle clogging test
- Pump running test
System verification

- Manufacturer’s watermist system
- Fire test protocols, DD8489, DD8458, other
 - Additional tests for maximum pressure, higher ceiling and ventilation
- Design manuals
- Hydraulic calculations
Certification assessment

- Assessment of performance requirements of components, systems and fire tests against standardised methodologies
- Assessment of quality control, ISO 9001
- On-going assessments of product, system and management through regular Factory Production Control (FPC) and product audits.
Certificate and listing

- Product description
- Scope of application

<table>
<thead>
<tr>
<th>Type</th>
<th>Parameter</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>domestic and residential</td>
<td>Floor area of compartment</td>
<td>32 m² or tested area</td>
</tr>
<tr>
<td></td>
<td>Ceiling height</td>
<td>2.5 m or tested height up to 5 m</td>
</tr>
<tr>
<td></td>
<td>Ventilation</td>
<td>≤ 1 m³/s total, from any source</td>
</tr>
<tr>
<td></td>
<td>Fire load</td>
<td>“Normal” layouts covered</td>
</tr>
</tbody>
</table>
Key facts

- Watermist is a complex technology
 - Increased efficiency
 - Increased vulnerability
 - Increased engineering
- No generic system design methodology, all systems are bespoke
- There are critical watermist parameters, e.g. nozzle spacing
- There are critical fire / room parameters, e.g. compartmentation
- There are critical design, installation and maintenance requirements
Summary

- Watermist standard - based on good practice and comprehensive research and testing
- Watermist product testing – based on established protocols and application specific fire test protocols
- Third party approvals - confidence in product and system performance
Thank you

Louise Jackman
LPCB
01923 664948
Jackmanl@bre.co.uk

Watermist office test demo
http://www.youtube.com/user/BREVideoUK#p/u/11/kq8N-9TaoZc